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Abstract
An isochronous system is introduced by modifying the Nth ODE of the
stationary Burgers hierarchy, and then, by investigating its behaviour near
its equilibria, neat Diophantine relations are identified, involving (well-known)
polynomials of arbitrary degree having integer zeros, or equivalently matrices
the determinants of which yield such polynomials. The basic idea to arrive at
such relations is not new, but the specific application reported in this paper is
new, and it is likely to open the way to several analogous new findings.

PACS numbers: 02.10.Yu, 02.30.Ik, 02.30.Gp, 02.30.Hq

1. Introduction

The general approach to arrive at the findings reported in this paper can be described as
follows (see for instance [1]). One starts from an integrable ODE of (arbitrary) order N +1, all
solutions of which are meromorphic functions of its independent (‘time’) variable (the Painlevé
property). One then modifies it (via an appropriate change of dependent and independent
variables: see below) so that—thanks to the analyticity properties in complex time of the
solutions of the original integrable ODE—the modified ODE becomes entirely isochronous: its
solutions are all periodic with the same fixed period. (Indeed, the modification entails that the
time-evolution yielded by the modified ODE corresponds essentially to the evolution yielded
by the original ODE when its independent variable rotates uniformly on a circle in the complex
plane: the isochrony of the solutions of the modified ODE is therefore a consequence of the
meromorphic character of all solutions of the original ODE, considered as functions of their
complex independent variable. The possibility to perform such a modification, transforming
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via this technique—as described below—an autonomous ODE into a modified ODE which
is also autonomous, requires that the original system satisfy a grading property, which is
often featured by integrable systems analogous to that treated herein: see [1].) One then
identifies the equilibrium (i.e. time-independent) solutions of the isochronous ODE (in some
cases this can be done explicitly: see below) and investigates, close to these equilibria, their
(infinitesimally small) oscillations. The frequencies of these oscillations are given by the roots
of polynomials of degree N +1. The fact that the ODE is isochronous entails that, around each
equilibrium, these frequencies must all be integer multiples of a basic one. In this manner
one arrives at Diophantine relations: polynomials are identified which factorize in terms of
integer zeros.

Our route to arrive at these findings is not new, and it might appear contrived: indeed,
in the context treated below, its formulation via an isochronous ODE could be replaced by
other, equivalent approaches of a more algebraico-geometrical character (as outlined below,
see remark 2 in the following section). We prefer this route because its ‘physical’ significance
is quite transparent and its application has already yielded interesting findings (for a review see
[1], including its appendix C entitled ‘Diophantine findings and conjectures’). The application
of this approach to the integrable ODE treated herein is new, hence the corresponding findings
are as well new. And it is plain that analogous results are obtainable by applying the same
approach to other integrable ODEs, this being perhaps the most interesting aspect of the
findings reported below. Indeed the derivation of analogous results from the N-th order ODE
of the KdV (rather than the Burgers) hierarchy is almost completed and will be reported
soon [2].

The results of this paper are detailed in the following section 2 and proven in the subsequent
section 3. A terse section 4 entitled ‘Outlook’ concludes the paper.

2. Results

It is well-known that the following nonlinear ODE of order N + 1,(
d

dτ

) {
d

dτ
+ ζ(τ )

}N

· ζ(τ ) = 0, (1)

is integrable, and in particular that all its solutions ζ(τ ) possess the (‘Painlevé’) property to be
meromorphic functions of the independent variable τ , considered as a complex variable. The
notation

{
d

dτ
+ ζ(τ )

}N · indicates of course the sequential application N times of the operator{
d

dτ
+ ζ(τ )

}
.

The fact that the ODE (1) is integrable is well-known: this equation is just the stationary
version of the N-th PDE of the ‘Burgers’ hierarchy of integrable PDEs (with the ‘spatial’
independent variable denoted here as τ ).

Consistently with our approach we now replace the ODE (1) with a modified ODE,
obtained via the following change of (dependent and independent) variables:

z(t) = exp(i t)ζ(τ ), ζ(τ ) = exp(−i t)z(t), (2a)

τ ≡ τ(t) = i[1 − exp(i t)]. (2b)

Here, and below, i is the imaginary unit, i2 = −1. Note that the formula (2b) implies the
relation

dτ(t)

dt
= exp(i t), (3a)
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hence,
d

dτ
= exp(−i t)

d

dt
. (3b)

(Formula (2b) also implies τ(0) = 0 hence z(0) = ζ(0); but this simple relation will play no
role in the following.)

As clearly implied by the relations (2a) and (3b), our modified ODE reads(
d

dt

) {
exp(−i t)

[
d

dt
+ z(t)

]}N

· exp(−i t)z(t) = 0. (4)

Hereafter we will consider t as the new independent real variable (‘time’), and z(t) as the new
dependent variable; and it is clear (see [1] if need be) from (2) and the meromorphic character
of the dependence of ζ(τ ) from τ , that z(t) satisfies the isochrony property

z(t + 2π) = z(t). (5)

A more explicit version of the ODE (4), displaying its autonomous character, clearly reads
as follows: [

d

dt
− (N + 1)i

] N∏
n=1

[
d

dt
− i n + z(t)

]
z(t) = 0. (6a)

This ODE is obtained from (4) by commuting the terms exp(−i t) to the extreme left of the
ODE (and finally omitting the nonvanishing factor exp[−i (N + 1)t] appearing at the extreme
left of the equation); note that now the product symbol means that the operator d

dt
− i + z(t)

appears to the extreme right and the operator d
dt

− i N + z(t) to the extreme left,

N∏
n=1

[
d

dt
− i n + z(t)

]
≡

[
d

dt
− i N + z(t)

]
. . .

[
d

dt
− i + z(t)

]
. (6b)

Consistently with our approach we now set (for infinitesimal ε),

z(t) = i y + ε exp(i x t), (7)

where clearly z(t) = i y (with y time-independent) denotes an equilibrium solution of the ODE
(6a) and the term ε exp(i xt) denotes the (infinitesimally small) oscillations of the solution of
the ODE (6a) in the neighborhood of this equilibrium configuration.

The insertion of this ansatz in our isochronous ODE (6a) then yields, to order ε0 = 1, the
neat formula

N∏
n=0

[y − n] = 0, (8a)

yielding the N + 1 equilibrium configurations

yk = k, k = 0, 1, . . . , N. (8b)

Likewise, to order ε, it is easily seen that we get from (6a) (assuming (8) is satisfied) the
equation

[x − (N + 1)]PN(x; y) = 0, (9)

with

PN(x; y) =
N∑

n=0

{[
N∏

m=n+1

(x + y − m)

][
n−1∏
m=0

(y − m)

]}
(10a)
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or, equivalently,

PN(x; y) =
N∏

m=1

(x + y − m) +
N−1∏
m=0

(y − m)

+
N−1∑
n=1

{[
N∏

m=n+1

(x + y − m)

][
n−1∏
m=0

(y − m)

]}
. (10b)

The equivalence among these two definitions of the polynomial PN(x; y) is consistent with
the usual convention according to which a product has unit value if its lower limit exceeds by
one unit its upper limit,

n∏
�=m

ϕ� = 1 if m = n + 1. (11a)

Actually it is convenient (see below) to adopt also the additional convention according to
which

n∏
j=m

ϕ� =
m−1∏

j=n+1

1

ϕ�

if m > n + 1. (11b)

Note that PN(x; y) is a monic polynomial of degree N in x, and also a (not monic)
polynomial of degree N in y; but of course the equation (9) only holds for values of y

satisfying (8), and for such values of y it must have the Diophantine property to yield integer
values for the N roots of the polynomial PN(x; y) (considered as a function of x). These N
roots must moreover be all different among themselves and also different from the additional
solution x = N + 1 of (9)—as clearly implied by the requirement that the solution (7) of the
ODE (4), of order N + 1, satisfy the isochrony property (5). Hereafter we use the notation
P

(k)
N (x) for the polynomial PN(x; y) with (8b), and we note that it reads

P
(k)
N (x) =

k∑
n=0

[
k!

(k − n)!

N∏
m=n+1

(x + k − m)

]
, k = 0, 1, . . . , N. (12)

The main result of this paper—proven in section 3—is the factorization formula

P
(k)
N (x) =

k∏
m=1

(x + m)

N−k∏
m=1

(x − m)

= (−1)N−kpk(x)pN−k(−x). (13)

Here and hereafter the ‘shifted Pochhammer’ polynomials are defined as follows:

pn(x) = (x + 1)n =
n∏

m=1

(x + m), (14a)

of course with the convention (11a) entailing p0(x) = (x + 1)0 = 1. In this formula and
always below the ‘Pochhammer’ symbol (z)m has the usual meaning,

(z)0 = 1, (z)n = 	 (z + n)

	(z)
=

n−1∏
�=0

(z + �) for n = 1, 2, 3, . . . (14b)

(see for instance page 56 of [3]).
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The formula (13) is of course valid for k = 0, 1, . . . , N, and it clearly shows that—
consistently with the ‘Diophantine’ expectations indicated above—the monic polynomial
P

(k)
N (x) features the k negative integer zeros −1,−2, . . . ,−k, and the N − k positive integer

zeros 1, 2, . . . , N − k (of course for k = 0 there are no negative zeros, and for k = N there
are no positive zeros).

Remarkably, by taking advantage of the convention (11b), this formula can be extended
to read, for arbitrary positive integer k and nonnegative integer N smaller than k,

P
(k)
N (x) =

k∑
n=0

[
k!

(k − n)!

N∏
m=n+1

(x + k − m)

]

=
N−1∑
n=0

[
k!

(k − n)!

N∏
m=n+1

(x + k − m)

]
+

k!

(k − n)!

+
k∑

n=N+1

[
k!

(k − n)!

n∏
m=N+1

1

(x + k − m)

]

= 1

x

k∏
m=k−N

(x + m) = pk(x)

xpk−N−1(x)
,

N = 0, 1, . . . , k − 1, k = 1, 2, . . . , (15a)

and likewise, for arbitrary nonnegative integer k and N = −1,

P
(k)
N (x) =

k∑
n=0

[
k!

(k − n)!

−1∏
m=n+1

(x + k − m)

]

=
k∑

n=0

[
k!

(k − n)!

n∏
m=1

1

(x + k − m)

]

= 1

x
, k = 0, 1, . . . , (15b)

and as well, for arbitrary nonnegative integer k and arbitrary negative integer N less than −1,

P
(k)
N (x) =

k∑
n=0

[
k!

(k − n)!

N∏
m=n+1

(x + k − m)

]

=
k∑

n=0

[
k!

(k − n)!

n∏
m=N+1

1

(x + k − m)

]

= 1

x

k−N−1∏
m=k+1

1

(x + m)
= pk(x)

xpk−N−1(x)
,

k = 0, 1, . . . , N = −2,−3, . . . . (15c)

A related finding, also proven in section 3, is the observation that the shifted Pochhammer
polynomial (14a) has the following determinantal representation:

pk(x) = det[c(k)(x)] (16)

with the k × k tridiagonal matrix c(k)(x) defined componentwise as follows:

c(k)
n,n(x) = x + 2n − 1, n = 1, . . . , k, (17a)

5
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c
(k)
n,n+1(x) = c

(k)
n,n+1 = 1, n = 1, . . . , k − 1, (17b)

c
(k)
n,n−1(x) = (n − 1)(x + n − 1), n = 2, . . . , k, (17c)

with all other matrix elements vanishing.
And another interesting finding, which is an immediate consequence of this result, is the

observation that the shifted Pochhammer polynomials (14a) are as well characterized by the
three-term recursion relation

pn(x) = (x + 2n − 1)pn−1(x) − (n − 1)(x + n − 1)pn−2(x), (18)

with the initials assignments p0(x) = 1, p1(x) = x +1. But of course the shifted Pochhammer
polynomials are clearly characterized, see (14a), by the two-term recursion relation

pn(x) = (x + n)pn−1(x) (19)

with p0(x) = 1, and it is easily seen that this relation implies the three-term recursion relation
(18) (to see this, note that (19) allows to replace, in the right-hand side of (18), the term
(x + n − 1)pn−2(x) withpn−1(x), thereby showing that the right-hand sides of (18) and (19)
coincide).

Let us end this section with two remarks.

Remark 1. For generic values of the variables x and y the monic polynomial PN(x; y), see
(10), can clearly be rewritten (using the Pochhammer notation (14b)) as follows:

PN(x; y) = (−1)N(−x − y + 1)N

N∑
n=0

[
(1)n(−y)n

n!(−x − y + 1)n

]
. (20)

The sum in the right-hand side of (20) can then be recognized as the truncated hypergeometric
function yN(a, b, c, z) with unit argument, z = 1, upper parameters a = 1 and b = −y,
and lower parameter c = −x − y + 1, and thereby related to appropriate 3F2 hypergeometric
functions of unit argument (for the notation and the relevant formulas see pages 191 and 192
of [3]):

PN(x; y) = (−1)N(−x − y + 1)N

· (N + 1)

(N + 1 − y)
3F2

[
1,−y,−x − y + N + 1;
−y + N + 2,−x − y + 1

]
, (21a)

PN(x; y) = (x + y − N)N+1 − (y − N)N+1

x
, (21b)

PN(x; y) = (−1)N
(N + 1)

(N + 1 − x − y)

	(N + 1 − y)

	(x + 1)	(1 − x − y)

·3F2

[
−x − y,−x − y + N + 1,−x + 1;

−x − y + 1,−x − y + N + 2

]
. (21c)

These formulas, together with the findings reported above, see (13), clearly entail some
Diophantine properties of certain 3F2 hypergeometric functions with unit argument and
appropriate parameters.

Remark 2. Analogous results to those reported here could have been obtained directly
from the ODE (1), without going through its isochronous version (4). Then clearly the role
of the equilibrium solution z(t) = i y of the isochronous ODE (4) would have been played

6
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by the simple single-pole solution ζ(τ ) = i y(τ − τ0)
−1 of the ODE (1), and the role of the

solution (7) would have been played by the solution ζ(τ ) = i y(τ − τ0)
−1[1 + ε(τ − τ0)

x]
(with ε infinitesimal)—the requirement that x be integer being then directly implied by the
meromorphic character of all solutions of the integrable ODE (1).

3. Proofs

Let us first of all demonstrate our main result, namely the equality of the two expressions
(12) and (13) of the monic polynomial P

(k)
N (x). Since the polynomial (12) is clearly monic

and of degree N (note that its highest-degree term comes from the n = 0 term in the sum),
to prove this result it is necessary and sufficient to show that the right-hand side of (12),
with k = 0, 1, . . . , N , vanishes when x takes the negative integer values −k,−k + 1, . . . ,−1
and the positive integer values 1, 2, . . . , N − k. Indeed in both these cases (with these
negative respectively positive values of x, that should be treated separately) it is easily seen,
via appropriate shifts of the summation index and the standard binomial formula

Q∑
q=0

[
(−z)q

q!(Q − q)!

]
= (1 − z)Q

Q!
, (22)

that the polynomial (12) vanishes because it becomes proportional to the binomial (1 − z)

with z = 1 raised to a positive power. Our main result is thereby proven.
Let us then proceed to prove the additional finding reported in the previous section (see

(16) with (17)). We start from the observation that—as it is easily seen by expanding along
its last line the determinant in the right-hand side of the following formula—an alternative
version of the polynomial (12) is provided by the formula

P
(k)
N (x) = det[A(k)(x)], (23)

where A(k)(x) is the (N + 1) × (N + 1) block matrix

A(k)(x) =
(

B(k)(x) 0
0 C(k)(x)

)
. (24)

The triangular (N − k) × (N − k) matrix B(k)(x) is defined componentwise as follows:

B(k)
n,n(x) = x − N + k + n − 1, n = 1, . . . , N − k, (25a)

B
(k)
n,n+1(x) = B

(k)
n,n+1 = 1, n = 1, . . . , N − k − 1, (25b)

with all other matrix elements vanishing, and the (k + 1) × (k + 1) matrix C(k)(x) is defined
componentwise as follows:

C(k)
n,n(x) = x + n − 1, n = 1, . . . , k, (26a)

C
(k)
n,n+1(x) = C

(k)
n,n+1 = 1, n = 1, . . . , k, (26b)

C
(k)
k+1,n(x) = C

(k)
k+1,n = (−1)k+1−nk!

(n − 1)!
, n = 1, . . . , k + 1, (26c)

with all other matrix elements vanishing. Recall that we are always assuming that k takes an
integer value in the range from 0 to N.

Clearly the block structure (24) entails that an equivalent formula to (23) reads

P
(k)
N (x) = det[B(k)(x)] det[C(k)(x)], (27)

7
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while the triangular character of the (N − k) × (N − k) matrix B(k)(x), see (25), implies

det[B(k)(x)] = (−1)N−kpN−k(−x), (28)

with the ‘shifted Pochhammer’ polynomial pN−k(x) defined by (14a). Hence via the formula
(13) (proven above) we conclude that

det[C(k)(x)] = pk(x) = (x + 1)k =
k∏

m=1

(x + m). (29)

We now associate to the (k + 1)× (k + 1) matrix C(k)(x) another (k + 1)× (k + 1) matrix—
clearly having the same determinant—obtained by subtracting from every column (except the
last) of C(k)(x) its subsequent column multiplied by an appropriate coefficient, chosen so
as to cancel exactly the bottom term of the resulting column. We thus get the tridiagonal
(k + 1) × (k + 1) matrix C̃(k)(x) defined componentwise as follows:

C̃(k)
n,m(x) = C(k)

n,m(x) − C
(k)
n,m+1(x)

C
(k)
k+1,m(x)

C
(k)
k+1,m+1(x)

,

n = 1, . . . , k + 1, m = 1, . . . , k; (30a)

C̃
(k)
n,k+1(x) = C

(k)
n,k+1(x), n = 1, . . . , k + 1. (30b)

Clearly the bottom line of this matrix has all elements vanishing, except for the last one,
C

(k)
k+1,k+1(x) = C

(k)
k+1,k+1, which equals unity, C

(k)
k+1,k+1 = 1, see (26). We can therefore replace

the formula (29) with the equivalent expression

det[c(k)(x)] = pk(x) = (x + 1)k =
k∏

m=1

(x + m), (31)

where the k × k matrix c(k)(x) coincides with the (k + 1) × (k + 1) matrix C̃(k)
n,m(x) amputated

of its last line and of its last column. We thus arrive, via (26), at the formula (16) with (17),
which is thereby proven.

4. Outlook

As mentioned above, we deem that the main results of our paper are the Diophantine
factorizations (13) of the polynomial (12), as well as the related findings: the formulas
(15) and the combinations of these relations with the formulas (21), entailing Diophantine
properties of certain hypergeometric functions. As it generally happens with such findings,
once such properties are uncovered it is easy to prove their validity, and there may be several
alternative routes to do so. We have not found such formulas in the standard compilations of
mathematical formulas where we hope they will eventually appear (especially the Diophantine
findings involving hypergeometric functions)—but of course we cannot be quite certain that
such simple and neat formulas are new. It seems to us in any case remarkable that such results
can be obtained—presumably for the first time—from such a thoroughly explored class of
integrable PDEs as the Burgers one.

Clearly, the approach applied in this paper to the N-th ODE of the stationary ‘Burgers’
hierarchy can be analogously applied to other hierarchies of integrable PDEs, indeed as already
mentioned above analogous results for the KdV hierarchy are in the pipeline [2]. This fact is
perhaps the most interesting contribution of the present paper.

8
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Finally, let us mention that presumably an extension of some of the results reported in this
paper is possible, analogous to the extension from hypergeometric to basic hypergeometric
functions by Chen and Ismail [4] of the Diophantine findings we obtained in previous papers
(see in particular [5]).
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